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Abstract

Central stars of planetary nebulae (CSPNe) are characterized by very high temperatures and surface
gravities and may present strong wind features, most conspicuous on the UV. Solid determinations of
their stellar parameters are necessary to tackle questions concerning stellar evolution and possible
evolutionary links among different CSPN sub-types, the wind driving mechanism and the properties of the
surrounding nebulae. UV and Far-UV observations are important for measuring the terminal velocity of
the wind and constraining wind clumping to measure accurate mass loss rates. These spectral regions
also show important diagnostic lines of highly ionized iron, argon and neon and, in the case of very hot
[WCE] CSPNe, the few available lines of multiple ionization stages of a given element. We derived wind
and photospheric parameters for a H-deficient CSPNe sample from HST/STIS, FUSE and IUE UV and
Far-UV observations. We also present grids of synthetic spectra (Keller et al. 2011), calculated using the
CMFGEN non-LTE stellar atmosphere code (Hillier & Miller 1998), which accounts for spherically
symmetric stationary expanding atmospheres, line blanketing and wind clumping. The grids include many
lonic species previously neglected, facilitate line identification and are an important tool to plan
observations.

Grids of Synthetic Spectra

Grid Models’ Abundances
The stellar parameter adopted for the grid models are within typical literature

Element Mass Fraction

values for H-poor CSPNe and approximately follow the evolutionary calculations He 0.43
of Miller Bertolami & Althaus (2006).

C 0.45
The ionic species included in the models can vary, since they were limited to N 0.01
keep the models within a workable size. All models have the following species: O 0.08
He |, He ll, Helll, C IV, CV, NV, N VI, OV, OVI OVII, Ne V, Ne VI, Ne VII, Ne Ne 0.02
VIIl, Ne IX, Si IV, SiV,PV,PVI S VI S VI, Fe VIl, FeVIll, Fe IX, Fe X, Fe XI. Al 5.57x10°°
The other ionic species, which include C II, ClIl, N Il, N lIl, NIV, O Il, O lll, O IV, S; 6.99x10
Ne Il, Ne lll, Ne IV, Al lll, Al'IV, Al'V, Silll, SiVI,PIV,S I, SIV,SV, FelV, Fe P 6.12x10-
V, Fe VI, were added as needed s 3 825104

Fe 1.36x10°®

The grids are available at http://dolomiti.pha.jhu.edu/planetarynebulae.html.
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Figure 1. Left panel: the [WC] (gray and green dots) and PG1159 (green and orange dots) grids of synthetic spectra
are shown on the log(T) X log(g) diagram, along with evolutionary calculations from Miller Bertolami & Althaus (2006),
in blue. Right panel: comparison between similar temperature synthetic spectra from the PG1159 and the [WC] grids.
The PG1159 models have fainter winds that reach higher terminal velocities than the ones from the [WC] grid models.
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Effect of the LSF on the Synthetic Spectra
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The grids can be used to
plan observations,
determining the necessary
instrument parameters,
particularly if the shape of the
LSFs (not just their FWHM)
fit the requirements for the
desired measurement.
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Figure 3. Left panel: C IV AL 1548.2, 1550.8 A synthetic line profile from a grid model convolved with a Gaussian of
FWHM equal to the nominal resolution of the G140L difraction grating from the STIS spectrograph (blue line), with the
G140L instrumental LSF for the 52x0.5" apperture (red line), and for the 52x2.0” apperture (dark red line). Other
panels: the HST STIS LSFs (red lines) are compared to Gaussians (blue lines) with FWHM equal to the nominal
spectral resolution of the configuration.
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UV Spectral Analysis
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Our uniform

systematic analysis of observed spectra
to constrain stellar parameters. We used
them to analyze UV and far-UV spectra
of the hot central stars of NGC 6905,
NGC 5189 and Sand 3 and constrain

their main stellar parameters. We also
explore additional parameters, such as
less abundant ions not included in the
wider grids and the iron abundance.
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Figure 5.

Right: observed
spectra (black
line) of the
central stars of
NGC 6905,
NGC 5189 and
Sand 3 and our
best fit models
(colored lines).
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Parameters of our best-fitting models

Object  T.JkK] R[Rg] v kmis] X. Xg X, X, X,
NGC 6905 150 10.7 2000 044 045 1.1x104 008 0.02
NGC 5189 165 10.5 2500 058 025 001 012 004
into  the Sand 3 150 9.3 2000 028 055 007 008 0.02
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